Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01001
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301001
Published online 07 September 2018
  • Li Q M, Chen X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 28 (1): 93-116 (2003) [CrossRef] [Google Scholar]
  • Hentz S, Donzé F V, Daudeville L. Discrete element modelling of concrete submitted to dynamic loading at high strain rates [J]. Computers & Structures, 82 (29–30): 2509-2524 (2004) [CrossRef] [Google Scholar]
  • Chen X, Wu S, Zhou J. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete [J]. Construction and Building Materials, 47: 419-430 (2013) [CrossRef] [Google Scholar]
  • Zhang M, Wu HJ, Li QM, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: Experiments [J]. International Journal of Impact Engineering, 36 (12): 1327-1334 (2009) [Google Scholar]
  • Li QM, Lu YB, Meng H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations [J]. International journal of impact engineering, 36 (12): 1335-1345 (2009) [Google Scholar]
  • Al-Salloum Y, Almusallam T, Ibrahim S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments [J]. Cement and Concrete Composites, 55: 34-44 (2015) [CrossRef] [Google Scholar]
  • Hao Y, Hao H, Jiang G P, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests [J]. Cement & Concrete Research, 52 (10): 63–70 (2013) [CrossRef] [Google Scholar]
  • Zhou X Q, Hao H. Modelling of compressive behavior of concrete-like materials at high strain rate [J]. International Journal of Solids & Structures, 45 (17): 4648-4661 (2008) [Google Scholar]
  • T.J.Holmquist, G.R. Johnson, W.H.Cook. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. In: The 14th International Symposium on Ballistics, Quebec, pp, 591-600 (1993) [Google Scholar]
  • Lv T H, Chen X W, Chen G. The 3D Meso-scale Model and Numerical Tests of Split Hopkinson Pressure Bar of Concrete Specimen. Construction and Building Materials, under review (2017) [Google Scholar]
  • Hao Y F, Zhang X H, Hao H. Numerical analysis of concrete material properties at high strain rate under direct tension [J]. Procedia Engineering, 39 (1): 51-62 (2012) [CrossRef] [Google Scholar]
  • Hao Y, Hao H, Li Z X. Numerical Analysis of Lateral Inertial Confinement Effects on Impact Test of Concrete Compressive Material Properties. International Journal of Protective Structures, 1 (1): 145-168 (2010) [CrossRef] [Google Scholar]