Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01002
Number of page(s) 4
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301002
Published online 07 September 2018
  • P.S. Follansbee and U.F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall. 36, 81-93 (1988) [CrossRef] [Google Scholar]
  • R. Kappor and S. Namet-Nasser, Comparison between high and low strain rate deformation of tantalum, Metall. Mater. Trans. A31, 815-823 (2000) [CrossRef] [Google Scholar]
  • W.S. Lee and T.H. Chen, Rate dependent deformation and dislocation substructure of Al-Sc alloy, Scr. Mater. 5, 1463-1468 (2006) [CrossRef] [Google Scholar]
  • S. Namet Nasser, W.G. Guo and D.P. Kihl, Thermomechanical response of Al-6XN stainless steel over a wide range of strain rates and temperatures, J. Mech. Phys. Solids 49, 1823-1846 (2001) [CrossRef] [Google Scholar]
  • H. Couque, The use of direct impact Hopkinson pressure bar technique to describe thermally activated and viscous drag regimes of metallic materials, Phil. Trans. Royal soc. A372, 20130218 (2014) [Google Scholar]
  • Y. Fan, Y.N. Osetsky, S. Yip and B. Yildiz, Onset mechanism of strain rate induced flow stress upturn, Phys. Rev. Letters 109, 135503 (2012) [CrossRef] [Google Scholar]
  • P.S. Follansbee and I. Weertman, On the question of flow stress at high strain rates controlled by dislocation viscous flow, Mech. Mater. 1, 345-350 (1982) [CrossRef] [Google Scholar]
  • S. Namet-Nasser and Y. Yulong, Flow stress of FCC polycrystals with application to OFHC Cu, Acta Mater. 46, 565-577 (1998) [CrossRef] [Google Scholar]
  • R.W. Armstrong, W. Arnold and F. Zerilli, Dislocation mechanics of shock induced plasticity, Metall. Mater. Trans. A38, 2605-2610 (2007) [CrossRef] [Google Scholar]
  • Y. Partom, Overstress and flowstress approaches to dynamic viscoplasticity, EPJ web of conferences 94, 04003 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  • D.E. Grady, Structured shock waves and the fourth power law, J. Appl., Phys. 107, 013506 (2010) [CrossRef] [Google Scholar]
  • M.A. Meyers, Dynamic behavior of materials, John Wiley & Sons, p. 122 (1994) [Google Scholar]
  • R.W. Armstrong and S.M. Walley, High strain rate properties of metals and alloys, Int. Mater. Rev. 53, 105-128 (2008) [CrossRef] [Google Scholar]
  • Y. Partom, Calibrating strain rate dependence of viscoplastic flow from fourth power law data, SCCM 2011, AIP conf. Proc. 1426, 1105-1108 (2012) [CrossRef] [Google Scholar]
  • L.M. Barker, Behavior of dense media under dynamic pressure, Gordon and Breech, New York, p. 483 (1968) [Google Scholar]
  • W. Band and G.E. Duvall, Am. J. Phys. 29, p. 780 (1961) [CrossRef] [Google Scholar]