Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01046
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301046
Published online 07 September 2018
  • E. M. Schulson, ‘Structure and mechanical behavior of ice’, JOM, vol. 51, no. 2, pp. 21–27 (1999) [CrossRef] [Google Scholar]
  • K. Soobarayen et al., ‘Caractérisation, modélisation et simulation numérique du comportement de la glace en dynamique rapide’, presented at the CSMA 2017, Giens (2017) [Google Scholar]
  • A. Combescure, Y. Chuzel-Marmot, and J. Fabis, ‘Experimental study of high-velocity impact and fracture of ice’, Int. J. Solids Struct., vol. 48, no. 20, pp. 2779–2790 (2011) [CrossRef] [Google Scholar]
  • H. Fangming, ‘Experimental and numerical modeling of high speed ice impact onto rigid target’, Cranfield university (2015) [Google Scholar]
  • P. K. Dutta, D. M. Cole, M. S. Erland, and S. S. Devinder, ‘A Fracture Study of Ice Under High Strain Rate Loading’ (2004) [Google Scholar]
  • K. S. Carney, D. J. Benson, P. DuBois, and R. Lee, ‘A high strain rate model with failure for ice in LS-DYNA’ (2009) [Google Scholar]
  • M. Shazly, V. Prakash, and B. A. Lerch, ‘High strain-rate behavior of ice under uniaxial compression’, Int. J. Solids Struct., vol. 46, no. 6, pp. 1499–515 (2009) [CrossRef] [Google Scholar]
  • Y. Chuzel, ‘Caractérisation expérimentale et simulation numérique d’impacts de glace à haute vitesse’, Institut national des sciences appliquées de Lyon (2009) [Google Scholar]
  • R. Ortiz, E. Deletombe, and Y. Chuzel-Marmot, ‘Assessment of damage model and strain rate effects on the fragile stress/strain response of ice material’, Int. J. Impact Eng., vol. 76, pp. 126–138 (2015) [CrossRef] [Google Scholar]
  • J. Pernas-Sanchez, D. A. Pedroche, D. Varas, J. Lopez-Puente, and R. Zaera, ‘Numerical modeling of ice behavior under high velocity impacts’, Int. J. Solids Struct., vol. 49, no. 14, pp. 1919–27 (2012) [CrossRef] [Google Scholar]
  • K. S. Carney, D. J. Benson, P. DuBois, and R. Lee, ‘A phenomenological high strain rate model with failure for ice’, Int. J. Solids Struct., vol. 43, no. 25–26, pp. 7820–7839 (2006) [CrossRef] [Google Scholar]
  • J. D. Tippmann, H. Kim, and Jennifer D. Rhymer, ‘Experimentally validated strain rate dependent material model for spherical ice impact simulation’, Int. J. Impact Eng., vol. 57, pp. 43–54 (2013) [CrossRef] [Google Scholar]
  • T. Sain and R. Narasimhan, ‘Constitutive modeling of ice in the high strain rate regime’, Int. J. Solids Struct., vol. 48, no. 5, pp. 817–827 (2011) [CrossRef] [Google Scholar]
  • M. Anghileri, L. M. L. Castelletti, F. Invernizzi, and M. Mascheroni, ‘A survey of numerical models for hail impact analysis using explicit finite element codes’, Int. J. Impact Eng., vol. 31, no. 8, pp. 929–44 (2005) [CrossRef] [Google Scholar]
  • M. A. Lavoie, A. Gakwaya, M. N. Ensan, D. G. Zimcik, and D. Nandlall, ‘Bird’s substitute tests results and evaluation of available numerical methods’, Int. J. Impact Eng., vol. 36, no. 10, pp. 1276–1287 (2009) [CrossRef] [Google Scholar]
  • J. D. Tippmann, ‘Development of a strain rate sensitive ice material model for hail ice impact simulation (2011) [Google Scholar]
  • G. R. Liu and M. B. Liu, Smoothed Particule Hydridynamics a meshfree particle method. Singapore (2003) [Google Scholar]
  • F. Yu. A., ‘Feautures of compressive failure of brittle materials’, Hamburg, Germany (2008) [Google Scholar]