Open Access
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01045
Number of page(s) 6
Section Modelling and Numerical Simulation
Published online 07 September 2018
  • F.A.O. Fernandes, R.T. Jardin, A.B. Pereira, and R.J. Alves de Sousa. Comparing the mechanical performance of synthetic and natural cellular materials. Materials & Design, 82 335-341 (2015) [CrossRef] [Google Scholar]
  • L. Di Landro, G. Sala, and D. Olivieri. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets, Polymer Testing, 21 217-228 (2002) [Google Scholar]
  • A. Pellegrino, V.L. Tagarielli, R. Gerlach, and N. Petrinic. The mechanical response of a syntactic polyurethane foam at low and high rates of strain, In-ternational Journal of Impact Engineering, 75 214-221 (2015) [Google Scholar]
  • J.C. Gowda. A flexible syntactic foam for shock mitiga-tion, PhD thesis, North Carolina A&T State University (2011) [Google Scholar]
  • H. Jmal. Identification du comportement quasi-statique et dynamique de la mousse de polyuréthane au travers de modèles à mémoire, PhD thesis, Université de Haute Alsace (2012) [Google Scholar]
  • Z.H. Tu, V.P.W. Shim, and C.T. Lim. Plastic deforma-tion modes in rigid polyurethane foam under static load-ing, International Journal of Solids and Structures, 38 9267-9279 (2001) [CrossRef] [Google Scholar]
  • W. Chen, F. Lu, and N. Winfree. High-strain-rate com-pressive behavior of a rigid polyurethane foam with vari-ous densities, Experimental Mechanics, 42 65-73 (2002) [Google Scholar]
  • E. Zaretsky, Z. Asaf, E. Ran, and F. Aizik. Impact re-sponse of high density flexible polyurethane foam, Inter-national Journal of Impact Engineering, 39 1-7 (2012) [CrossRef] [Google Scholar]
  • D.M. Dattelbaum, J.D. Coe, C.B. Kiyanda, R.L. Gus-tavsen, and B.M. Patterson. Reactive, anomalous com-pression in shocked polyurethane foams, Journal of Ap-plied Physics, 115 174908 (2014) [CrossRef] [Google Scholar]
  • S.P. Marsh. LASL shock Hugoniot data, University of California Press (1980) [Google Scholar]
  • L. Berthe. Processus de claquage de milieux transpar-ents sous irradiation laser. Application au choc laser en régime de confinement par eau, PhD thesis, Université de Paris Sud (1998) [Google Scholar]
  • J. Grün, R. Decoste, B.H. Ripin, and J. Gardner. Char-acteristics of ablation plasma from planar, laser-driven targets, Applied Physics Letters, 39 545-547 (1981) [Google Scholar]
  • A.V. Bushman, I.V. Lomonosov, and V.E. Fortov. Equations of state for metals at high energy density, In-stitute of Chemical Physics (1992) [Google Scholar]
  • D.J. Steinberg, S.G. Cochran, and M.W. Guinan. A constitutive model for metals applicable at high-strain-rate, Journal of Applied Physics 51 (1980) [Google Scholar]
  • L. Seaman, R.E. Tokheim, and D.R. Curran. Com-putational representation of constitutive relations for porous materials, Technical report, Stanford Research Institute (1974) [Google Scholar]
  • L.J. Gibson and M.F. Ashby. Cellular solids: Structure and properties – Second edition, Cambridge University Press (1997) [Google Scholar]