Open Access
Issue
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 06013
Number of page(s) 6
Section Non Metallic Materials
DOI https://doi.org/10.1051/epjconf/202125006013
Published online 09 September 2021
  • Kendall, M.J. and C.R. Siviour, Experimentally simulating high-rate behaviour: rate and temperature effects in polycarbonate and PMMA. Philos Trans A Math Phys Eng Sci, 2014. 372(2015): p. 20130202. [Google Scholar]
  • Siviour, C.R., et al., The high strain rate compressive behaviour of polycarbonate and polyvinylidene difluoride. Polymer, 2005. 46(26): p. 12546-12555. [CrossRef] [Google Scholar]
  • Richeton, J., et al., Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. International Journal of Solids and Structures, 2006. 43(78): p. 2318-2335. [Google Scholar]
  • Mulliken, A.D. and M.C. Boyce, Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. International Journal of Solids and Structures, 2006. 43(5): p. 1331-1356. [CrossRef] [Google Scholar]
  • Siviour, C.R. and J.L. Jordan, High Strain Rate Mechanics of Polymers: A Review. Journal of Dynamic Behavior of Materials, 2016. 2(1): p. 15-32. [CrossRef] [Google Scholar]
  • Rittel, D., On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mechanics of Materials, 1999. 31(2): p. 131-139. [Google Scholar]
  • Sorini, C., A. Chattopadhyay, and R.K. Goldberg, Micromechanical modeling of the effects of adiabatic heating on the high strain rate deformation of polymer matrix composites. Composite Structures, 2019. 215: p. 377-384. [Google Scholar]
  • Kendall, M.J. and C.R. Siviour, Experimentally simulating adiabatic conditions: Approximating high rate polymer behavior using low rate experiments with temperature profiles. Polymer, 2013. 54(18): p. 5058-5063. [CrossRef] [Google Scholar]
  • Trivedi, A.R. and C.R. Siviour, A novel methodology for predicting the high rate mechanical response of polymers from low rate data: application to (plasticised) poly(vinyl chloride). Mechanics of Time-Dependent Materials, 2020. [Google Scholar]
  • Yoon, S.-H., I. Giannakopoulos, and C.R. Siviour, Application of the Virtual Fields Method to the uniaxial behavior of rubbers at medium strain rates. International Journal of Solids and Structures, 2015. 69: p. 553-568. [Google Scholar]
  • Trautmann, A., et al., Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar. International Journal of Impact Engineering, 2005. 31(5): p. 523-544. [Google Scholar]