Open Access
Issue
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 05007
Number of page(s) 6
Section Metallic Materials
DOI https://doi.org/10.1051/epjconf/202125005007
Published online 09 September 2021
  • T. Børvik, H. Aunehaugen, O. S. Hopperstad, “Impact behaviour of the high-strength aluminium alloy AA7075-T651” DYMAT International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, 695-701 (2009) [Google Scholar]
  • C. C. Roth, T. Fras, and D. Mohr, “Dynamic perforation of lightweight armor: Temperature-dependent plasticity and fracture of aluminum 7020-T6”, Mech. Mater., vol. 149, no. July, p. 103537, 2020 [Google Scholar]
  • K. S. Pandya, C. C. Roth, and D. Mohr, “Strain rate and temperature dependent fracture of aluminum alloy 7075: Experiments and neural network modeling”, Int. J. Plast., vol. 135, p. 102788, (2020) [Google Scholar]
  • G. Johnson and W. Cook, Engineering Fracture Mechanics, vol. 21, no. 1, pp. 31-48 (1985) [CrossRef] [Google Scholar]
  • U. Ali, W. Muhammad, A. Brahme, O. Skiba, and K. Inal, “Application of artificial neural networks in micromechanics for polycrystalline metals”, Int. J. Plast., vol. 120, no. November 2018, pp. 205–219, 2019 [Google Scholar]
  • X. Li, C. C. Roth, and D. Mohr, “Machine-learning based temperatureand ratedependent plasticity model: Application to analysis of fracture experiments on DP steel”, Int. J. Plast., vol. 118, no. October 2018, pp. 320–344, 2019 [Google Scholar]
  • C. Roth and D. Mohr, International Journal of Plasticity, vol. 56, pp. 19-44 (2014) [CrossRef] [Google Scholar]
  • M. Riedmiller and H. Braun, IEEE International Conference on Neural Networks, vol. 1, pp. 586-591 (1993) [CrossRef] [Google Scholar]