Open Access
Issue
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 02015
Number of page(s) 7
Section Modelling & Numerical Simulation
DOI https://doi.org/10.1051/epjconf/202125002015
Published online 09 September 2021
  • C. Siviour, P. Laity, W. Proud, J. Field, D. Porter, P. Church, P. Gould, and W. Huntingdon-Thresher, High Strain Rate Properties of a Polymer-Bonded Sugar: Their Dependence on Applied and Internal Constraints, Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 1229 (2008). [Google Scholar]
  • P. J. Rae and D. M. Dattelbaum, The Properties of Poly(Tetrafluoroethylene) (PTFE) in Compression, Polymer. 45, 7615 (2004). [CrossRef] [Google Scholar]
  • E. N. Brown, P. J. Rae, and E. B. Orler, The Influence of Temperature and Strain Rate on the Constitutive and Damage Responses of Polychlorotrifluoroethylene (PCTFE, Kel-F 81), Polymer. 47, 7506 (2006). [CrossRef] [Google Scholar]
  • A. R. Trivedi and C. R. Siviour, A Simple Rate–Temperature Dependent Hyperelastic Model Applied to Neoprene Rubber, J. Dyn. Behav. Mater. 6, 336 (2020). [Google Scholar]
  • A. R. Trivedi and C. R. Siviour, A Novel Methodology for Predicting the High Rate Mechanical Response of Polymers from Low Rate Data: Application to (Plasticised) Poly(Vinyl Chloride), Mech. Time-Dependent Mater. 1 (2020). [Google Scholar]
  • D. M. Williamson, C. R. Siviour, W. G. Proud, S. J. P. Palmer, R. Govier, K. Ellis, P. Blackwell, and C. Leppard, Temperature–Time Response of a Polymer Bonded Explosive in Compression (EDC37), J. Phys. D. Appl. Phys. 41, 085404 (2008). [Google Scholar]
  • D. R. Drodge, D. M. Williamson, S. J. P. Palmer, W. G. Proud, and R. K. Govier, The Mechanical Response of a PBX and Binder: Combining Results across the Strain-Rate and Frequency Domains, J. Phys. D. Appl. Phys. 43, (2010). [Google Scholar]
  • H. Kolsky, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc. Sect. B 62, 676 (1949). [Google Scholar]
  • G. T. (Rusty) Gray III and W. R. Blumenthal, Split-Hopkinson Pressure Bar Testing of Soft Materials, ASM Handbook Volume 8, Mechanical Testing and Evaluation (ASM International) (2000). [Google Scholar]
  • W. Chen, B. Zhang, and M. J. Forrestal, A Split Hopkinson Bar Technique for Low Impedance Materials, Exp. Mech. 39, 81 (1999). [Google Scholar]
  • M. J. Kendall, D. R. Drodge, R. F. Froud, and C. R. Siviour, Stress Gage System for Measuring Very Soft Materials under High Rates of Deformation, Meas. Sci. Technol. 25, 075603 (2014). [Google Scholar]
  • F. Pierron and M. Grédiac, Towards Material Testing 2.0. A Review of Test Design for Identification of Constitutive Parameters from Full-Field Measurements, Strain 57, 12370 (2020). [Google Scholar]
  • M. J. Kendall and C. R. Siviour, Experimentally Simulating Adiabatic Conditions: Approximating High Rate Polymer Behavior Using Low Rate Experiments with Temperature Profiles, Polym. (United Kingdom) 54, 5058 (2013). [Google Scholar]
  • M. J. Kendall and C. R. Siviour, Experimentally Simulating High Rate Composite Deformation in Tension and Compression: Polymer Bonded Explosive Simulant, J. Dyn. Behav. Mater. 1, 114 (2015). [Google Scholar]
  • MRPRA, Natural Rubber Engineering Data Sheet EDS 19, 1980. [Google Scholar]
  • W. P. Cox and E. H. Merz, Correlation of Dynamic and Steady Flow Viscosities, J. Polym. Sci. 28, 619 (1958). [Google Scholar]
  • D. A. Gorham, The Effect of Specimen Dimensions on High Strain Rate Compression Measurements of Copper, J. Phys. D. Appl. Phys. 24, 1489 (1991). [Google Scholar]
  • R. Cornish, D. Porter, P. Church, P. Gould, T. Andrews, B. Proud, D. Drodge, and C. Siviour, Comparison of Porter-Gould Constitutive Model with Compression Test Data for HTPB/SUGAR, in AIP Conference Proceedings, vol. 955 (2007), pp. 777–780. [Google Scholar]