Open Access
Issue |
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 9 | |
Section | Modelling & Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/202125002004 | |
Published online | 09 September 2021 |
- J. L. Zinszner, P. Forquin, et G. Rossiquet, « Experimental and numerical analysis of the dynamic fragmentation in a SiC ceramic under impact », Int. J. Impact Eng., vol. 76, p. 9–19, févr. 2015. [Google Scholar]
- J. L. Zinszner, B. Erzar, P. Forquin, et E. Buzaud, « Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: An experimental and numerical study », J. Mech. Phys. Solids, vol. 85, p. 112–127, déc. 2015. [CrossRef] [Google Scholar]
- D. Zhang, L. G. Zhao, et A. Roy, « Mechanical Behavior of Silicon Carbide Under Static and Dynamic Compression », J. Eng. Mater. Technol., vol. 141, no 011007, juill. 2018. [Google Scholar]
- N. Bourne, J. Millett, Z. Rosenberg, et N. Murray, « On the shock induced failure of brittle solids », J. Mech. Phys. Solids, vol. 46, no 10, p. 1887–1908, Oct. 1998. [CrossRef] [Google Scholar]
- G. R. Johnson et T. J. Holmquist, « An improved computational constitutive model for brittle materials », AIP Conf. Proc., vol. 309, no 1, p. 981, mai 2008. [Google Scholar]
- P. Forquin et F. Hild, « A probabilistic damage model of the dynamic fragmentation process in brittle materials », Adv. Appl. Mech., vol. 44, p. 1, 2010. [Google Scholar]
- F. Hild, C. Denoual, P. Forquin, et X. Brajer, « On the probabilistic–deterministic transition involved in a fragmentation process of brittle materials », Comput. Struct., vol. 81, no 12, p. 1241–1253, may 2003. [Google Scholar]
- G. R. Johnson et W. H. Cook, « Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures », Eng. Fract. Mech., vol. 21, no 1, p. 31–48, jan. 1985. [Google Scholar]
- A. Matzenmiller, J. Lubliner, et R. L. Taylor, « A constitutive model for anisotropic damage in fiber-composites », Mech. Mater., vol. 20, no 2, p. 125–152, avg. 1995. [Google Scholar]
- A. Puck et H. Schürmann, « Failure analysis of FRP laminates by means of physically based phenomenological models », Compos. Sci. Technol., vol. 62, no 12, p. 1633–1662, sept. 2002. [Google Scholar]
- J. Reinoso, G. Catalanotti, A. Blázquez, P. Areias, P. P. Camanho, et F. París, « A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion », Int. J. Solids Struct., vol. 126–127, p. 37–53, Nov. 2017. [Google Scholar]
- J. Wiegand, « Constitutive modelling of composite materials under impact loading », http://purl.org/dc/dcmitype/Text, Oxford University, UK, 2009. [Google Scholar]
- N. V. De Carvalho, S. T. Pinho, et P. Robinson, « An experimental study of failure initiation and propagation in 2D woven composites under compression », Compos. Sci. Technol., vol. 71, no 10, p. 1316–1325, juill. 2011. [CrossRef] [Google Scholar]
- F. Pascal, O. Dorival, P. Navarro, S. Marguet, et J.-F. Ferrero, « Impact damage prediction in thin woven composite laminates – Part I: Modeling strategy and validation », Compos. Struct., vol. 190, p. 32–42, avr. 2018. [Google Scholar]
- N. V. De Carvalho, S. T. Pinho, et P. Robinson, « Analytical modelling of the compressive and tensile response of woven composites », Compos. Struct., vol. 94, no 9, p. 2724–2735, sept. 2012. [CrossRef] [Google Scholar]
- Y. Duplan, « Caractérisation expérimentale et modélisation des propriétés de rupture et de fragmentation dynamiques d’un noyau de munition et de céramiques à blindage », phdthesis, Université Grenoble Alpes [2020], 2020. [Google Scholar]
- A. Healey, J. Cotton, S. Maclachlan, P. Smith, et J. Yeomans, « Understanding the ballistic event: methodology and initial observations », J. Mater. Sci., vol. 52, no 6, p. 3074–3085, mars 2017. [PubMed] [Google Scholar]
- S. T. Pinho, L. Iannucci, et P. Robinson, « Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development », Compos. Part Appl. Sci. Manuf., vol. 37, no 1, p. 63–73, janv. 2006. [Google Scholar]
- J. Lemaitre, « How to use damage mechanics », Nucl. Eng. Des., vol. 80, no 2, p. 233–245, juill. 1984. [CrossRef] [Google Scholar]
- P. A. Tarantili et A. G. Andreopoulos, « Mechanical properties of epoxies reinforced with chloride-treated aramid fibers », J. Appl. Polym. Sci., vol. 65, no 2, p. 267–276, 1997. [Google Scholar]
- J. Petrovic, D. Bekric, I. Vujicic, I. Dimic, et S. Putic, « Microstructural characterization of glass-epoxy composites subjected to tensile testing », Acta Period. Technol., no 44, p. 151–162, 2013. [Google Scholar]