Open Access
Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 4 | |
Section | Microstructural Effects | |
DOI | https://doi.org/10.1051/epjconf/201818303001 | |
Published online | 07 September 2018 |
- D.E. Chegodaev, Design of Metal Rubber Components, Press of National Defense Industry, pp. 2–12 (translated by Li Z.Y., 2000) [Google Scholar]
- A.O. Hong-Rui, H.Y. Jiang, H. Yan, et al., Research of a metal rubber isolation system based on complex stiffness, Journal of Harbin Institute of Technology 37, pp. 1615–1629 (in Chinese, 2005) [Google Scholar]
- E. Piollet, D. Poquillon, G. Michon, Dynamic hysteresis modelling of entangled cross-linked fibres in shear, Journal of Sound and Vibration 383, pp. 248-264 (2016) [CrossRef] [Google Scholar]
- D. Rodney, B. Gadot, O.R. Martinez, S. Rolland Du Roscoat, L. Orgéas, Reversible dilatancy in entangled single-wire materials. Nature Materials 15, pp. 72–77 (2015) [CrossRef] [PubMed] [Google Scholar]
- J.F. Hou, H.B. Bai, D.W. Li, Damping capacity measurement of elastic porous wiremesh material in wide temperature range. Journal of Materials Processing Technology 206, pp. 412–418 (2008) [CrossRef] [Google Scholar]
- Q. Tan, G. He, Stretching behaviors of entangled materials with spiral wire structure. Materials & Design 46, pp.61-65 (2013) [CrossRef] [Google Scholar]
- B. Gadot, O. Riu Martinez, S. Rolland Du Roscoat, D. Bouvard, D. Rodney, L. Orgéas, Entangled single-wire NiTi material: A porous metal with tunable superelastic and shape memory properties, Acta Materialia 96, pp. 311-323 (2015) [CrossRef] [Google Scholar]
- J. Hu, Q. Du, J. Gao, J. Kang, B. Guo, Compressive mechanical behavior of multiple wire metal rubber, Materials and Design 140, pp. 231–240 (2018) [CrossRef] [Google Scholar]
- L. Courtois, E. Maire, M. Perez, D. Rodney, O. Bouaziz, Y.Brechet, Mechanical properties of monofilament entangled materials, Optical Measurements, Modeling, and Metrology, 5. (Springer, New York, NY, 2011) [Google Scholar]
- P. Qiao, M. Yang, F. Bobaru, Impact Mechanics and High-Energy Absorbing Materials: Review, Journal of Aerospace Engineering, 21, pp. 235– 248 (2008) [CrossRef] [Google Scholar]
- C. Bacon, An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar, Experimental Mechanics, 38, pp. 242-249 (1998) [Google Scholar]
- C. Froustey, M. Lambert, J.L. Charles, J.L. Lataillade, Design of an impact loading machine based on a flywheel device: Application to the fatigue resistance of the high rate pre-straining sensitivity of aluminium alloys, Experimental Mechanics, 47, pp. 709–721 (2007) [Google Scholar]
- D. Rodney, M. Fivel, R. Dendievel, Discrete modeling of the mechanics of entangled materials, Physical Review Letters, 95 (2005) [Google Scholar]
- J. Girardot, F. Dau, A mesoscopic model using the discrete element method for impacts on dry fabrics, Matériaux & Techniques 104,408 (2016) [CrossRef] [EDP Sciences] [Google Scholar]