Open Access
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 02008
Number of page(s) 6
Section Experimental Techniques
Published online 07 September 2018
  • M. Ahmed, D. Wexler, et al. The influence of b phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy. Acta Materialia 84 124-135 (2015) [CrossRef] [Google Scholar]
  • D.G. Robertson, H.B. Mc Shane, Isothermal hot deformation behavior of metastable beta titanium alloy Ti-10V-2Fe-3Al, Mater. Sci. Technol. 13 575-583 (1999) [CrossRef] [Google Scholar]
  • Suresh Neelakantan, P.E.J. Rivera-Diaz-del-Castillo and Sybrand van der Zwaag. Prediction of the martensite start temperature for b titanium alloys as a function of composition. Scripta Materialia 60 611-614 (2009) [CrossRef] [Google Scholar]
  • F. Warchomicka, M. Stockinger, H.P. Degischer. Quantitative analysis of the microstructure of near titanium alloy during compression tests. Journal of Materials Processing Technology 177 473-477 (2006) [CrossRef] [Google Scholar]
  • M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, Application of novel technique to examine thermomechanical processing of near β alloy Ti–10V– 2Fe–3Al, Materials Science and Technology. 16 1437 (2000) [CrossRef] [Google Scholar]
  • M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging, Metall. Mater. Trans. A 36A 1317-1327 (2005) [CrossRef] [Google Scholar]
  • T.W. Duerig, J. Albrecht, D. Richter, P. Fischer. Formation and Reversion of Stress Induced Martensitic in Ti-10V-2Fe-3Al. Acta Metall. 30 2161-2172 (1982) [CrossRef] [Google Scholar]
  • C. Li, J.H. Chen, et al., Tuning the stress induced martensitic formation in titanium alloys by alloy design. J. Mater. Sci. 47 4093-4100 (2012) [CrossRef] [Google Scholar]
  • S.L. Semiatin, T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of Ti6Al4V with a transformed microstructure, Acta Mater. 49 3565- 3573 (2001) [CrossRef] [Google Scholar]
  • Niu W, Bermingham MJ, Baburamani PS, Palanisamy S, Dargusch MS, Turk S, Grigson B, Sharp PK, The effect of cutting speed and heat treatment on the fatigue life of Grade 5 and Grade 23 Ti-6Al-4Valloys. Mater Des 46 (4): 640–644 (2013) [CrossRef] [Google Scholar]
  • Su Y, He N, Li L, Li XL, An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear 261 (7–8): 760–766 (2006) [CrossRef] [Google Scholar]
  • Armendia M, Garay A, Iriarte LM, Arrazola PJ Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC-Co tools. J Mater Process Technol 210 (2): 197–203 (2010) [CrossRef] [Google Scholar]
  • Jaffery SHI, Mativenga PTWear mechanisms analysis for turning Ti-6Al-4V—towards the development of suitable tool coatings. Int J Adv Manuf Technol 58 (5–8): 479–493 (2012) [CrossRef] [Google Scholar]
  • D. Bai, J. Sun, W. Chen, T. Wang, Int J Adv Manuf Technol. DOI 10.1007/s00170-016-9607-z (2016) [Google Scholar]
  • H. Yang, Z. Chen, Z. Zhou, Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling. Int J Adv Manuf Technol 78 (5-8): 1113-1126 (2015) [CrossRef] [Google Scholar]
  • M. Long, H.J. Rack, High temperature discontinuous yielding in betaphase Ti3Al–(Nb, V, Mo) alloys, in: P.A. Blenkinsop, W.J. Evans, H.M. Flower (Eds.), Titanium’95: Science and Technology, The Institute of Materials, London, pp. 316-323 (1996) [Google Scholar]
  • M.N. Vijayshankar, S. Ankem, High temperature deformation of alpha, alpha-beta and beta titanium alloys, in: F.H. Froes, I. Caplan (Eds.), Titanium’92: Science and Technology, TMS, Warrendale, PA, pp. 1733-1739 (1993) [Google Scholar]
  • P. Wanjara, M. Jahazi, H. Monajati, S. Yue, J.-P. Immarigeon, Hot working behavior of near-alpha alloy IMI834, Mater. Sci. Eng. A 396 50-60 (2005) [CrossRef] [Google Scholar]
  • D.G. Robertson, H.B. McShane, Isothermal hot deformation behavior of metastable β titanium alloy Ti-10V-2Fe-3AI. Mater. Sci. Technol. 13575-583 (1997) [Google Scholar]
  • V.V. Balasubrahmanyam & Y.V.R.K. Prasad, Hot deformation mechanisms in metastable beta titanium alloy Ti-10V-2Fe-3Al, Materials Science and Technology, 17 1222 (2001) [CrossRef] [Google Scholar]
  • Johnson, G.R., Cook, W.H., Fracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31 (1985) [CrossRef] [Google Scholar]