Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01019
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301019
Published online 07 September 2018
  • C.B. Skidmore, D.S. Phillips, P.W. Howe, J.T. Mang, J.A. Romero, In: Short J. M., Kennedy J. E. (Eds.), Proceedings of the 11th Detonation Symposium. Snowmass Village, Colorado (1998) [Google Scholar]
  • S. Ye, K. Tonokura, M. Koshi, Combustion & Flame, 132,1–2 (2003) [CrossRef] [Google Scholar]
  • B.E. Clements, E.M.Mas, Modelling & Simulation in Materials Science & Engineering, 12, 12 (2004) [CrossRef] [Google Scholar]
  • M.R. Baer, Thermochimica Acta, 384,1–2 (2002) [CrossRef] [Google Scholar]
  • S.J.P Palmer, J.E. Field, J.M. Huntley, Proceedings Mathematical & Physical Sciences, 440, 1909 (1993) [Google Scholar]
  • M. Li, J. Zhang, C.Y. Xiong, J. Fang, J.M. Li, Y. Hao, Optics and Lasers in Engineering, 43 (2005) [Google Scholar]
  • Liu Z W, Xie H M, Li K X, Chen P W, Huang F L. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads.Polymer Testing, 28: 627– 635 (2009) [CrossRef] [Google Scholar]
  • Chen P, Xie H, Huang F, Huang T, Ding Y. Deformation and failure of polymer bonded explosives under diametric compression test, Polymer Testing, 25 (3): 333–341 (2006) [Google Scholar]
  • Chen P, Huang F, Ding Y. Microstructure, deformation and failure of polymer bonded explosives, Journal of Materials Science, 42 (13): 5272–5280 (2007) [CrossRef] [Google Scholar]
  • Pengwan Chen, Zhongbin Zhou, Shaopeng Ma, Qinwei Ma, Fenglei Huang. Measurement of dynamic fracture toughness and failure behavior for explosive mock materials, Front Mech Eng., 6 (3): 292–295 (2011) [Google Scholar]
  • Li Jun-Ling, Fu Hua, Tan Duo-Wang, Lu Fang-Yun and Chen Rong. Fracture Behaviour Investigation into a Polymer-Bonded Explosive, Strain 48, 463–473 (2012) [CrossRef] [Google Scholar]
  • Zubelewicz A, Thompson D G, Ostojastarzewski M, et al. Fracture model for cemented aggregates, AIP Advances, 3 (1): 3275 (2013) [CrossRef] [Google Scholar]
  • Danzhu Ma, Pengwan Chen, Qiang Zhou and Kaida Dai. Ignition criterion and safety prediction of explosives under low velocity impact. Journal of Applied Physics, 114 (11): 405-408 (2013) [Google Scholar]
  • Berghout H L, Son S F, Skidmore C B, et al. Combustion of damaged PBX 9501 explosive. Thermochimica Acta, 384(1-2): 261-277 (2002) [CrossRef] [Google Scholar]
  • Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives. Journal of the Mechanics & Physics of Solids, 46 (12): 2303-2322 (1998) [CrossRef] [Google Scholar]
  • Dienes J K, Zuo Q H, Kershner J D. Impact initiation of explosives and propellants via statistical crack mechanics. Journal of the Mechanics & Physics of Solids, 54 (6): 1237-1275 (2006) [CrossRef] [Google Scholar]
  • Belmas R and Reynier P. Mechanical behavior of pressed explosives, International Symposium Energetic Materials Technology Florida, March 21-23, 1994: 360-365 (1994) [Google Scholar]
  • Ellis K, Leppard C, Radesk H. Mechanical properties and damage evaluation of a UK PBX. Journal of Materials Science, 40 (23): 6241-6248 (2005) [CrossRef] [Google Scholar]
  • D.G. Thompson, G.T. Gray III, W.R. Blumenthal, C.M. Cady, W.J. Wright, B. Jacquez, LA-UR-02-6592 (2002) [Google Scholar]
  • D. Picart, J.L. Brigolle, Materials Science and Engineering, A 527(2010) [Google Scholar]
  • Viet Dung Le, Michel Gratton, Michael Caliez, Arnaud Frachon, Didier Picart. Experimental mechanical characterization of plastic-bonded explosives. Journal of Materials Science, 45: 5802–5813 (2010) [CrossRef] [Google Scholar]
  • Picart D, Benelfellah A, Brigolle J L, Frachon A, Gratton M, Caliez M. Characterization and modeling of the anisotropic damage of a high-explosive composition. Engineering Fracture Mechanics, 131: 525–537 (2014) [CrossRef] [Google Scholar]
  • Asay B W. Non-Shock Initiation of Explosives (Shock Wave Science and Technology Reference Library, Vol. 5, Springer-Verlag, Berlin Heidelberg, 2010) [CrossRef] [Google Scholar]
  • Trumel H, Lambert P, Belmas R. Mesoscopic investigations of the deformation and initiation mechanisms of a HMX-based pressed composition, in Proceedings of the 14th Detonation Symposium, Coeur d’Alene, USA (2010) [Google Scholar]
  • Gilles Pijaudier-Cabot, Zdenek Bittnar, Bruno Gerard. Mechanics of Quasi-Brittle Materials and Structures (HERMES Science Publications, Paris, 1999) [Google Scholar]
  • Liu C, Thompson D G. Crack Initiation and Growth in PBX 9502 High Explosive Subject to Compression. Journal of Applied Mechanics, 81 (10): 212-213 (2014) [Google Scholar]
  • Van de Steen B, Vervoort A, and Napier J A L. Observed and simulated fracture pattern in diametrically loaded discs of rock material. International Journal of Fracture, 131: 35–52 (2005) [CrossRef] [Google Scholar]
  • Lemaitre J, Desmorat R. Engineering Damage Mechanics-Ductile, Creep, Fatigue and Brittle Failures (Springer-Verlag, Berlin, Heidelberg, 2005) [Google Scholar]
  • Xicheng Huang, Chengjun Chen, Gang Chen, Ming Liu. Analysis of deformation and failure of polymer-bonded explosives using coupled plastic damage model (Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 2015) [Google Scholar]
  • Ionita A, Clements B E, Zubelewicz A, et al. Direct numerical simulations to investigate the mechanical response of energetic materials, Los Alamos National Laboratory, Los Alamos, NM, LA-UR-11-02598 (2011) [Google Scholar]
  • Toro S, Sánchez P J, Blanco P J, de Souza Neto E A, Huespe A E, Feijóo R A. Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales. International Journal of Plasticity, 76: 75-110 (2016) [CrossRef] [Google Scholar]
  • Y.Q. Wu, F.L. Huang, Mechanics of Materials, 41,1 (2009) [CrossRef] [Google Scholar]
  • Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45 (5): 601-620 (1999) [Google Scholar]
  • Zhuang Zuo. Extended Finite Element Method. Tsinghua University Press, 2012 (in Chinese) [Google Scholar]
  • Yu Tiantang. Extended Finite Element Method-Theory, Application and Programming. Science Press, 2014 (in Chinese) [Google Scholar]
  • Pommier S, Gravouil A, Combescure A, Nicolas Moës. Extended Finite Element Method for Crack Propagation. John Wiley & Sons, Inc. 173-226 (2013) [Google Scholar]
  • Tian Rong, Wen Longfei. Improved XFEM-An extra-dof free, well-conditioning, and interpolating XFEM. Computer Methods in Applied Mechanics and Engineering, 285: 639-658 (2015) [CrossRef] [Google Scholar]
  • Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45 (5): 601-620 (1999) [Google Scholar]
  • Melenk J M, Babuška I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics & Engineering, 139 (1– 4): 289-314 (1996) [CrossRef] [MathSciNet] [Google Scholar]
  • Barenblatt G I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, 7: 55-129 (1962) [CrossRef] [Google Scholar]
  • Jeong Hoon Song, Areias P M A. and Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 67 (6): 868-893 (2006) [CrossRef] [Google Scholar]
  • Remmers J J C, Borst R D, Needleman A. Needleman, A.: The simulation of dynamic crack propagation using the cohesive segments method. J. Mech. Phys. Solids 56 (1), 70-92 (2008) [CrossRef] [Google Scholar]
  • Lawn B R. Fracture of Brittle Solids (Cambridge University Press, second edition, 1993) [Google Scholar]
  • Needleman A. An analysis of decohesion along an imperfect interface. International Journal of Fracture, 42 (1): 21-40 (1990) [CrossRef] [Google Scholar]
  • Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement & Concrete Research, 6 (6): 773-781 (2008) [Google Scholar]
  • Zdenìk P. Bažant. Concrete fracture models: testing and practice. Engineering Fracture Mechanics, 69 (2): 165-205 (2002) [CrossRef] [Google Scholar]
  • Benzeggagh M L, Kenane M. Measurement of mixedmode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science & Technology, 56 (4): 439- 449 (1996) [Google Scholar]
  • Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete. International Journal of Solids & Structures, 25 (3): 299-326 (1989) [Google Scholar]
  • Lee J, Fenves G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. Journal of Engineering Mechanics, 124 (8): 892-900 (1998) [CrossRef] [Google Scholar]
  • Gruau C, Picart D, Belmas R, et al. Ignition of a confined high explosive under low velocity impact. International Journal of Impact Engineering, 36 (4): 537-550 (2009) [CrossRef] [Google Scholar]
  • Chen W F, Han D J. Plasticity for structural engineers (Springer-Verlag, 1988) [CrossRef] [Google Scholar]
  • EA de Souza Neto, D Perić, DRJ Owen. Computational methods for plasticity-theory and applications (New York, John Wiley & Sons, 2008) [Google Scholar]
  • Williamson D M, Palmer S J P, Proud W G. Fracture studies of PBX simulant materials, Shock Compression of Condensed Matter - American Institute of Physics, 845 (1): 829-832 (2006) [CrossRef] [Google Scholar]