Open Access
Issue
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01009
Number of page(s) 6
Section Modelling and Numerical Simulation
DOI https://doi.org/10.1051/epjconf/201818301009
Published online 07 September 2018
  • U.E. Ozturk and G. Anlas, Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading. Materials & Design,. 32 (2): p. 773-780 (2011) [CrossRef] [Google Scholar]
  • S.P. Singh, G. Burgess, and J. Singh, Performance comparison of thermal insulated packaging boxes, bags and refrigerants for single-parcel shipments. Packaging Technology and Science, 21 (1): p. 25-35 (2008) [CrossRef] [Google Scholar]
  • P.L.N. Fernando, M.T.R. Jayasinghe, and C. Jayasinghe, Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels. Construction and Building Materials, 139: p. 45-51 (2017) [CrossRef] [Google Scholar]
  • D.S. Babu, K.G. Babu, and T.H. Wee, Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cement and Concrete Research, 35 (6): p. 1218-1223 (2005) [CrossRef] [Google Scholar]
  • L. Di Landro, G. Sala, and D. Olivieri, Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polymer Testing, 21 (2): p. 217-228 (2002) [CrossRef] [Google Scholar]
  • L. Cui, L., R. Forero, and M.D. Gilchrist, Optimisation of energy absorbing liner for equestrian helmets. Part II: Functionally graded foam liner. Materials & Design, 30 (9): p. 3414-3419 (2009) [CrossRef] [Google Scholar]
  • R. Forero, L. Cui, and M.D. Gilchrist, Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner. Materials & Design, 30 (9): p. 3405-3413 (2009) [CrossRef] [Google Scholar]
  • W. Chen et al., Static and dynamic mechanical properties of expanded polystyrene. Materials & Design, 69: p. 170-180 (2015) [CrossRef] [Google Scholar]
  • A. Krundaeva et al., Dynamic compressive strength and crushing properties of expanded polystyrene foam for different strain rates and different temperatures. Polymer Testing, 55: p. 61-68 (2016) [CrossRef] [Google Scholar]
  • M.F. Ashby, The Mechanical-Properties of Cellular Solids. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 14 (9): p. 1755-1769 (1983) [CrossRef] [Google Scholar]
  • Y.M. Chen, R. Das, and M. Battley, Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams. International Journal of Solids and Structures, 52: p. 150-164 (2015) [CrossRef] [Google Scholar]
  • E. Mihlayanlar, S. Dilmac, and A. Guner, Analysis of the effect of production process parameters and density of expanded polystyrene insulation boards on mechanical properties and thermal conductivity. Materials & Design, 29 (2): p. 344-352 (2008) [CrossRef] [Google Scholar]
  • B. Song et al., Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam. International Journal of Impact Engineering, 31 (5): p. 509-521 (2005) [CrossRef] [Google Scholar]
  • S. Ouellet, D. Cronin, and M. Worswick, Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polymer Testing, 25 (6): p. 731-743 (2006) [CrossRef] [Google Scholar]
  • B. Koohbor et al., Investigation of the dynamic stress-strain response of compressible polymeric foam using a non-parametric analysis. International Journal of Impact Engineering, 91: p. 170-182 (2016) [CrossRef] [Google Scholar]
  • A. Gilchrist and N.J. Mills, Impact deformation of rigid polymeric foams: experiments and FEA modelling. International Journal of Impact Engineering, 25 (8): p. 767-786 (2001) [CrossRef] [Google Scholar]
  • L. Cui, S. Kiernan, and M.D. Gilchrist, Designing the energy absorption capacity of functionally graded foam materials. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 507 (1-2): p. 215-225 (2009) [CrossRef] [Google Scholar]
  • L. Cui, M.A.F. Rueda, and M.D. Gilchrist, Optimisation of energy absorbing liner for equestrian helmets. Part II: Functionally graded foam liner. Materials & Design, 30 (9): p. 3414-3419 (2009) [CrossRef] [Google Scholar]
  • M.A.F. Rueda,.L. Cui, and M.D. Gilchrist, Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner. Materials & Design, 30 (9): p. 3405-3413 (2009) [Google Scholar]
  • LS-DYNA Theory Manual. Livermore Software Technology [Google Scholar]
  • H.L. B. Croop, Selecting material models for the simulation of foams in LSDYNA, in: 7th European LS-DYNA Conference (2009) [Google Scholar]