Open Access
Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 04029 | |
Number of page(s) | 5 | |
Section | Modeling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/20159404029 | |
Published online | 07 September 2015 |
- L. Freund, Crack propagation in an elastic solid subjected to general loading – I. Constant rate of extension, Journal of the Mechanics and Physics of Solids, 20(3), 129–140 (1972) [CrossRef] [Google Scholar]
- L. Freund, Crack propagation in an elastic solid subjected to general loading – II. Non-uniform rate of extension, Journal of the Mechanics and Physics of Solids, 20(3), 141–152 (1972) [Google Scholar]
- W. Dilger, R. Koch, and R. Kowalczyk, Ductility of plain and confined concrete under different strain rates, ACI Journal Proceedings, 81(1), 73–81 (1984) [Google Scholar]
- N. Banthia, S. Mindess, and A. Bentur, Impact behaviour of concrete beams, Materials and Structures, 20(4), 293–302 (1987) [CrossRef] [Google Scholar]
- H.-W. Reinhardt, Concrete under Impact Loading, Tensile Strength and Bond, HERON, 27(3) (1982) [Google Scholar]
- P. Bischoff and S. Perry, Compressive behaviour of concrete at high strain rates, Materials and Structures, 24(6), 425–450 (1991) [Google Scholar]
- J. Weerheijm, Concrete under impact tensile loading and lateral compression, TU Delft, the Netherlands (1992) [Google Scholar]
- J. Ožbolt and H.-W. Reinhardt, Rate dependent fracture of notched plain concrete beams, CONCREEP 7, 57–62 (2005) [Google Scholar]
- J. Ožbolt, K. K. Rah, and D. Meštrović, Influence of loading rate on concrete cone failure, International Journal of Fracture, 139(2), 239–252 (2006) [Google Scholar]
- M. Larcher, Development of discrete cracks in concrete loaded by shock waves, International Journal of Impact Engineering, 36(5), 700–710 (2009) [CrossRef] [Google Scholar]
- R. R. Pedersen, Computational modelling of dynamic failure of cementitious materials, Delft University of Technology (2010) [Google Scholar]
- J. Ožbolt, A. Sharma, and H.-W. Reinhardt, Dynamic fracture of concrete-compact tension specimen, International Journal of Solids and Structures, 48(10), 1534–1543 (2011) [Google Scholar]
- J. Ožbolt and A. Sharma, Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen, Engineering Fracture Mechanics, 85, 88–102 (2012) [CrossRef] [Google Scholar]
- B. İrhan, High velocity impact and fragmentation of concrete: Numerical simulation, Institut für Werkstoffe im Bauwesen der Universität Stuttgart (2014) [Google Scholar]
- J. Ožbolt, A. Sharma, B. İrhan, and E. Sola, Tensile Behavior of Concrete under High Loading Rates, International Journal of Impact Engineering, 69, 55–68 (2014) [CrossRef] [Google Scholar]
- J. Ožbolt, J. Bošnjak, and E. Sola, Dynamic Fracture of Concrete Compact Tension Specimen: Experimental and Numerical Study, International Journal of Solids and Structures, 50, 4270–4278, (2013) [CrossRef] [Google Scholar]
- N. Bede, J. Ožbolt, A. Sharma, and B. İrhan, Dynamic fracture of notched plain concrete beams: 3D finite element analysis, International Journal of Impact Engineering, 77, 176–188 (2015) [CrossRef] [Google Scholar]
- J. D. Cargile, Development of a constitutive model for numerical simulation of projectile penetration into brittle geomaterials, Technical Report SL-99-11, U.S. Army Engineer Research and Development Center, Vicksburg, MS (1999) [Google Scholar]
- F. C. Caner and Z. P. Bažant, Impact comminution of solids due to local kinetic energy of high shear strain rate: II-Microplane model and verification, Journal of the Mechanics and Physics of Solids, 64, 236–248 (2014) [CrossRef] [Google Scholar]
- A.O. Frank, M.D. Adley, K.T. Danielson, and H.S. McDevitt Jr, The high-rate brittle microplane concrete model: Part II: application to projectile perforation of concrete slabs, Computers and Concrete, 9(4), 311–325 (2012) [CrossRef] [Google Scholar]
- J. Ožbolt, Y. Li, and I. Kožar, Microplane model for concrete with relaxed kinematic constraint, International Journal of Solids and Structures, 38(16), 2683–2711 (2001) [CrossRef] [Google Scholar]
- Z.P. Bažant and P.C. Prat, Microplane model for brittle-plastic material: I. Theory, Journal of Engineering Mechanics, 114(10), 1672–1688 (1988) [CrossRef] [Google Scholar]
- H. Mihashi and F. Wittmann, Stochastic Approach to Study the Influence of Rate of Loading on Strength of Concrete, HERON, 25(3) (1980) [Google Scholar]
- A. S. Krausz and K. Krausz, Fracture kinetics of crack growth, Springer, 1 (1988) [Google Scholar]
- Z.P. Bažant et al., Large-strain generalization of microplane model for concrete and application, Journal of Engineering Mechanics, 126(9), 971–980 (2000) [Google Scholar]
- Z.P. Bažant, F.C. Caner, M.D. Adley, and S.A. Akers, Fracturing rate effect and creep in microplane model for dynamics, Journal of Engineering Mechanics, 126(9), 962–970 (2000) [Google Scholar]
- N.J. Carpenter, R.L. Taylor, and M.G. Katona, Lagrange constraints for transient finite element surface contact, International Journal for Numerical Methods in Engineering, 32(1), 103–128 (1991) [Google Scholar]
- L. M. Taylor and D.P. Flanagan, PRONTO 3D: A three-dimensional transient solid dynamics program (1989) [Google Scholar]
- Z. P. Bažant and B. Oh, Crack band theory for fracture of concrete, Materials and Structures: 155–177 (1983) [Google Scholar]