Open Access
Issue
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 02020
Number of page(s) 5
Section Microstructural Effects
DOI https://doi.org/10.1051/epjconf/20159402020
Published online 07 September 2015
  • G.P. Kobylyansky, A.E. Novoselov. Radiation strength of zirconium and zirconium-based alloys. Reference materials on reactor material science. Dimitrovgrad: State Science Center NIIAR. (1996) 176 p [Google Scholar]
  • A.S. Zaimovsky, A.B. Nikulina, N.G. Reshetnikov. Zirconium alloys in nuclear power engineering.- M.: Energoatomizdat. (1994) [Google Scholar]
  • G.I. Kanel, V.E. Fortov, S.V. Razorenov. Rus.J. UFN (“Uspekhi Fizicheskikh Nauk”- Advances in Physical Sciences), v. 177, N0 8, pp. 809–830 (2007) [Google Scholar]
  • G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov. Shock-wave phenomena in condensed media. M.: “Yanus –K”, p. 408 (1996) [Google Scholar]
  • G.I. Kanel. R.J. Rus.J. PMTF (Applied Mechanics and Technical Physics), v. 42, N0 2, c. 1–5 (2001) [Google Scholar]
  • G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov. Experimental profiles of shock waves in condensed matter. M.: FIZMATLIT (2008) [Google Scholar]
  • Material physics: Coursebook for higher educational institutions. Volume 6, part 1. Structural materials for nuclear power engineering./ B.A. Kalin, P.A. Platonov, I.I. Chernov, Ya. I. Shtrombakh. – M.: MIFI. (2008). 672 p [Google Scholar]
  • M.V. Zhernokletov, V.N. Zubarev, R.F. Trunin, V.E. Fortov. Experimental data on shock compressibility and adiabatic expansion of condenced matter under high energy densities. Chernogolovka Publisher (1996) [Google Scholar]
  • A.V. Pavlenko, S.I. Balabin, O.E. Kozelkov, D.N. Kazakov. Rus.J. PTE, (Instruments and experimental technique), N0 4. pp. 122–124 (2013). [Google Scholar]
  • A.V. Pavlenko, S.N. Malyugina, V.V. Pereshitov, I.N. Lisitsyna. Rus.J. PTE, (Instruments and experimental technique), N0 2. pp. 127–129 (2013) [Google Scholar]
  • S.S. Mokrushin, N.A. Anikin, S.N. Malyugina, A.A. Tyaktev, A.V. Pavlenko. Rus.J. PTE, (Instruments and experimental technique), N0 4, pp. 107–110 (2014) [Google Scholar]
  • D.N. Kazakov, O.E. Kozelkov, A.S. Mayorova, S.N. Malyugina, S.S. Mokrushin and A.V. Pavlenko, Rus. J. MTT, 6, 77–86 (2014) [Google Scholar]
  • S.N. Malyugina, D.N. Kazakov, O.E. Kozelkov, A.S. Mayorova, S.S. Mokrushin and A.V. Pavlenko, In Proc this Conf (2015) [Google Scholar]
  • E.B. Zaretsky, G.I. Kanel. Plastic flow in shock-loaded silver at strain rates from 104 s-1 to 107 s-1 and temperatures from 296 K to 1233 K. J. Appl. Phys. 110 (7), 073502 (2011) [CrossRef] [Google Scholar]
  • E.B. Zaretsky and G.I. Kanel. Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression. J. Appl. Phys. 112, 073504 (2012) [CrossRef] [Google Scholar]
  • E.B. Zaretsky and G.I. Kanel. Response of copper to shock-wave loading at temperatures up to the melting point. J. Appl. Phys. 114, 083511 (2013) [CrossRef] [Google Scholar]
  • E.B. Zaretsky and G.I. Kanel. Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. Non-monotonous decay of the elastic wave in vanadium. Journal of Applied Physics 115, 243502 (2014) [CrossRef] [Google Scholar]
  • S.V. Razorenov, G.I. Kanel, G.V. Garkushin, O.N. Ignatova. Rus. J. FTT (Solid State Physics), v. 54, issue 4, pp. 742–749 (2012) [Google Scholar]
  • G.E. Duvall In: Stress Waves in Anelastic Solids, edited by H. Kolsky and W. Prager, Berlin: Springer-Verlag. p. 20 (1964) [CrossRef] [Google Scholar]
  • M.W. Guinan and D.J. Steinberg Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids, v. 35. pp. 1501–1512 (1974) [CrossRef] [Google Scholar]