Open Access
Issue
EPJ Web of Conferences
Volume 26, 2012
DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01012
Number of page(s) 6
Section Experimental Techniques
DOI https://doi.org/10.1051/epjconf/20122601012
Published online 31 August 2012
  • Duncan, J., 1999. Dynamic mechanical analysis techniques and complex modulus, in Mechanical Properties and Testing of Polymers, ed. G.M. Swallowe, pp. 43-48, publ. Dordrecht, The Netherlands, Kluwer. [CrossRef] [Google Scholar]
  • Garret, S. L., 1990. Resonant acoustic determination of elastic moduli. J. Acoust. Soc. Am. 88(1), July, 210-221 [CrossRef] [Google Scholar]
  • Guo, Q., Brown, D. A., 2000. Determination of the dynamic elastic moduli and internal friction using thin rods. J. Acoust. Soc. Am. 108, 167-174. [CrossRef] [PubMed] [Google Scholar]
  • Madigowski, W. M. Lee, G. F., 1983. Improved resonance technique for materials characterization. J. Acou. Soc. Am. 73(3), 1374-1377 [CrossRef] [Google Scholar]
  • Pintelon, R., Guillaume P. Vanlanduit S., De Belder K., Rolain Y., 2004 Identification of Young’s modulus from broadband modal analysis experiments. Mechanical Systems and Signal Processing 18, 2004, 699-726. [CrossRef] [Google Scholar]
  • Blanc, R. H.">, 1971. Détermination de l’équation de comportement des corps visco-élastiques linéaires par une méthode d’impulsion. Ph. D. Thesis, Université d’Aix-Marseille, published in part in Problèmes de la Rhéologie (W.K. Nowacki, editor), 65-85. IPPT PAN, Warsaw, 1973. [Google Scholar]
  • Blanc, R.H., 1993. Transient wave propagation methods for determining the viscoelastic properties of solids. Journal of Applied Mechanics, 60, 763-768. [CrossRef] [Google Scholar]
  • Lundberg, B., Blanc, R.H., 1988. Determination of mechanical material properties from the two-point response of an impacted linearly viscoelastic rod specimen. J. Sound Vib. 137, 483–493. [Google Scholar]
  • Lundberg, B., Ödeen, S., 1993-. In situ determination of the complex modulus from strain measurements on an impacted structure. J. Sound Vibration 167, 413-419. [CrossRef] [Google Scholar]
  • Hillström, L., Mossberg, M., Lundberg, B., 2000. Identification of complex modulus from measured strains on an axially impacted bar using least squares. J. Sound Vib. 230, 689–707. [Google Scholar]
  • Othman, R., 2002. Extension du champ d’application du système des barres de Hopkinson aux essais à moyennes vitesses de déformation. Ph. D. Thesis, Ecole Polytechnique, France. [Google Scholar]
  • Mousavi, S., Nicolas, D.F., Lundberg, B., 2004. Indetification of complex moduli and Poisson’s ratio from measured strains on an impacted bar. J. Sound Vibration 277, 971-986. [CrossRef] [Google Scholar]
  • Zhao, H., Gary, G., 1995. A three dimensional analytical solution of longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques. J. Mech. Phys. Solids 43, 1335–1348. [CrossRef] [Google Scholar]
  • Landau, L., Lifchitz, E., 1960. Electrodynamics of continuous media. Pergamon Press, Oxford, New York. [Google Scholar]
  • Landau, L., Lifchitz, E., 1980. Statistical Physics. Pergamon Press, Oxford, New York. [Google Scholar]
  • Golden, J., 2005. A proposal concerning the physical rate of dissipation in materials with memory. Quarterly Appl. Math., 63, 117-155. [Google Scholar]
  • Hanyga, A., 2005. Physically acceptable viscoelastic models. In Trends in Applications of Mathematics to Mechanics, Y. Wang and K. Hutter eds. Shaker Verlag, Aachen, 2005. See also http://www.geo.uib.no/hjemmesider/andrzej/. [Google Scholar]
  • Bouleau, N., 1999, Visco-élasticité et Processus de Levy, Potential Analysis, 11, 289-302. [Google Scholar]
  • Krein, M., Nudelman, A., 1998. An interpolation approach in the class of Stieltjes functions and its connection with other problems. Integr. Equ. Oper. Theory 30, 251-278. [CrossRef] [Google Scholar]
  • Gu, G., Xiong, D., Zhou, K., 1993. Identification in using Pick’s interpolation. Systems & Control Letters 20, 263-272. [CrossRef] [Google Scholar]
  • Kolsky, H., 1963. Stress Waves in Solids, Clarendon Press, Oxford. [Google Scholar]
  • Othman, R., Blanc, R. H., Bussac, M. N., Collet, P., Gary, G., 2002. Identification de la relation de la dispersion dans les barres. C. R. Mécanique, 330, 849-855. [CrossRef] [Google Scholar]