Issue |
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 05010 | |
Number of page(s) | 6 | |
Section | Metallic Materials | |
DOI | https://doi.org/10.1051/epjconf/202125005010 | |
Published online | 09 September 2021 |
https://doi.org/10.1051/epjconf/202125005010
Tensile behaviour of Inconel 718 alloys under extreme conditions of temperature and strain-rate
1
DynaMat SUPSI Laboratory, University of Applied Sciences and Arts of Southern Switzerland, Via Catenazzi 23, 6850 Mendrisio, Switzerland.
2
Automation Robotics and Machines Laboratory, University of Applied Sciences and Arts of Southern Switzerland, Via la Santa 1, 6962 Lugano-Viganello, Switzerland.
* e-mail: ezio.cadoni@supsi.ch
Published online: 9 September 2021
Nickel-based superalloys are widely used in critical applications where structural components are subjected to harsh operating conditions such as elevated temperatures and high strain-rate. These alloys are also among the most hard-to-cut materials. For this reason, some critical components with complex geometrical features along with critical dimensions cannot easily manufactured by conventional technologies. A rising disruptive Additive Manufacturing (AM) technique, namely powder-based Laser Metal Deposition (LMD), is able to overcome these limitations in terms of manufacturing costs, tool wear, as well as lead time. As a consequence, the mechanical response under harsh condition of additively manufactured Nickel-based superalloys has to be accurately understood in order to guarantee the reliability of the structural parts made with them. Presently very few researches were addressed to study the dynamic tensile behaviour of Inconel 718 produced by additive manufacturing under high strain-rate combined with elevated temperature. To overcome this lack, the coupled effect of strain rate (0.001 s−1, 250 s−1 and 800 s−1) and temperature (20°C, 350°C and 550°C) on the tensile properties of Inconel 718 alloys produced through cast and additive manufacturing technologies has been experimentally studied. The experiments were also addressed to investigate and compare the flow stress behaviour in function of strain rate and temperature considering the differences in terms of microstructure. A modest strain-rate sensitivity has been observed for both as-cast and as-built material, as well as a moderate decrease of the mechanical strengths has been highlighted for increasing temperatures. Finally, comparable mechanical behaviour has been observed between additively manufactured samples produced with a power laser of 400W and as-cast samples.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.