Issue |
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02034 | |
Number of page(s) | 6 | |
Section | Modelling & Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/202125002034 | |
Published online | 09 September 2021 |
https://doi.org/10.1051/epjconf/202125002034
Homogenization effects on simulated pultruded glass fibre reinforced laminate under compression – from static to dynamic models
Engineering Materials Science, Faculty of Engineering and Natural Sciences, Tampere University, 33014 Tampere, Finland
* Corresponding author: nazanin.pournoori@tuni.fi
Published online: 9 September 2021
This study presents a numerical analysis of failure in pultruded glass fibre reinforced polymer (GFRP) with three reinforcement layers, subjected to out-of-plane compressive loadings at low and high strain rates (10-3 s-1 and 103 s-1). The simulations targets to a computationally efficient homogenization with different element types and sizes. A single-element model was created to demonstrate the highest level of homogenization. The material properties in the homogenized model were calculated using the ESAComp (Altair) software. The 3D Hashin failure criterion was implemented as a user-defined subroutine into the finite element method using Abaqus (Simulia/Dassault Systemes) to predict the failure. The comparison between different meshes and elements shows the sufficient accuracy of the homogenized model to predict the material response at the damage onset, but the location of the crack was not accurately predicted as expected. High-rate impact simulations of the Split Hopkinson Pressure Bar tests showed that the mesh does not significantly affect the failure (strain) predicted by the homogenized model.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.